Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Energy Lett ; 7(10): 3401-3414, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277137

RESUMEN

Since the inception of the unprecedented rise of halide perovskites for photovoltaic research, ion migration has shadowed this material class with undesirable hysteresis and degradation effects, limiting its practical implementations. Unfortunately, the localized doping and electrochemical reactions triggered by ion migration cause many more undesirable effects that are often unreported or misinterpreted because they deviate from classical semiconductor behavior. In this Perspective, we provide a concise overview of such effects in halide perovskites, such as operational instability in photovoltaics, polarization-induced abnormal external quantum efficiency in light-emitting diodes, and energy channel shift and anomalous sensitivities in hard radiation detection. Finally, we highlight a unique use case of exploiting ion migration as a boon to design emerging memory technologies such as memristors for information storage and computing.

2.
Adv Mater ; 34(47): e2202390, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36069995

RESUMEN

Single-crystal halide perovskites exhibit photogenerated-carriers of high mobility and long lifetime, making them excellent candidates for applications demanding thick semiconductors, such as ionizing radiation detectors, nuclear batteries, and concentrated photovoltaics. However, charge collection depreciates with increasing thickness; therefore, tens to hundreds of volts of external bias is required to extract charges from a thick perovskite layer, leading to a considerable amount of dark current and fast degradation of perovskite absorbers. However, extending the carrier-diffusion length can mitigate many of the anticipated issues preventing the practical utilization of perovskites in the abovementioned applications. Here, single-crystal perovskite solar cells that are up to 400 times thicker than state-of-the-art perovskite polycrystalline films are fabricated, yet retain high charge-collection efficiency in the absence of an external bias. Cells with thicknesses of 110, 214, and 290 µm display power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7%, respectively. The remarkable persistence of high PCEs, despite the increase in thickness, is a result of a long electron-diffusion length in those cells, which was estimated, from the thickness-dependent short-circuit current, to be ≈0.45 mm under 1 sun illumination. These results pave the way for adapting perovskite devices to optoelectronic applications in which a thick active layer is essential.

3.
J Phys Chem Lett ; 13(17): 3824-3830, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35466679

RESUMEN

CsPbBr3 single crystals have potential for application in ionizing-radiation detection devices due to their optimal optoelectronic properties. Yet, their mixed ionic-electronic conductivity produces instability and hysteretic artifacts hindering the long-term device operation. Herein, we report an electrical characterization of CsPbBr3 single crystals operating up to the time scale of hours. Our fast time-of-flight measurements reveal bulk mobilities of 13-26 cm2 V-1 s-1 with a negative voltage bias dependency. By means of a guard ring (GR) configuration, we separate bulk and surface mobilities showing significant qualitative and quantitative transport differences. Our experiments of current transients and impedance spectroscopy indicate the formation of several regimes of space-charge-limited current (SCLC) associated with mechanisms similar to the Poole-Frenkel ionized-trap-assisted transport. We show that the ionic-SCLC seems to be an operational mode in this lead halide perovskite, despite the fact that experiments can be designed where the contribution of mobile ions to transport is negligible.

4.
J Eur Acad Dermatol Venereol ; 36(8): 1367-1375, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35412687

RESUMEN

BACKGROUND: Cutaneous lesions of mastocytosis (CLM) are often subtle and may require biopsy. However, dermatohistopathological criteria for CLM remain undefined. OBJECTIVES: To establish criteria for CLM by validating histological and molecular parameters. METHODS: In skin samples from Caucasian patients with CLM and controls (atopic dermatitis, chronic urticaria, pruritus, tissue from tumor safety margin excisions), mast cell (MC) numbers, size, shape, distribution, immunostainability with a large panel of markers, pigmentation and presence of KIT D816V mutation were analysed. RESULTS: Forty-seven CLM patients (32 maculopapular cutaneous mastocytosis (MPCM), 15 mastocytomas) and 36 controls were included. Mastocytomas were easily identified by densely packed cuboidal MCs. In MPCM, skin MC density in CD117 stains was higher in CLM patients than in controls (P < 0.0001) and values correlated closely (r = 0.65, P < 0.0001) to results in tryptase stains. The optimized upper dermis cut-off number of 62 MC/mm2 had a sensitivity and specificity of 92% in both stainings, corresponding to approximately 12 MC/high power field (HPF). MC size was larger in MPCM than in controls (P = 0.01). Interstitial (= not perivascular or periadnexal) MCs and stronger basal pigmentation of the epidermis were indicative of MPCM (P < 0.0001 each) and clusters of >3 nucleated MC/HPF exclusively found in MCPM. Surface markers CD2, CD25 and CD30 stained T-lymphocytes, but only negligibly CLM MC. The KIT D816V mutation in formalin fixed paraffin embedded (FFPE) skin was evaluable in 87.5% of MCPM patients and had both 100% sensitivity and specificity. CONCLUSIONS: MPCM can be predicted by major and minor criteria combined in a scoring model. Presence of D816V mutation in FFPE skin and MC density > 27/HPF are >95%-specific major criteria for MPCM. MC densities 12/HPF, interstitial MC, clusters and basal pigmentation are minor criteria.


Asunto(s)
Mastocitosis Cutánea , Mastocitosis Sistémica , Mastocitosis , Biomarcadores , Humanos , Mastocitos/patología , Mastocitosis/diagnóstico , Mastocitosis/patología , Mastocitosis Cutánea/diagnóstico , Mastocitosis Cutánea/genética , Mastocitosis Cutánea/patología , Mastocitosis Sistémica/patología , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Triptasas
5.
Nat Commun ; 12(1): 2191, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850155

RESUMEN

Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (<100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C.

6.
Nat Commun ; 11(1): 6174, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268784

RESUMEN

Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission.


Asunto(s)
Gryllidae/ultraestructura , Imagen Multimodal/métodos , Radiografía/métodos , Animales , Rayos Láser , Imagen Multimodal/instrumentación , Protones , Radiografía/instrumentación , Rayos X
7.
Nat Commun ; 11(1): 6328, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303755

RESUMEN

Light-induced halide segregation limits the bandgap tunability of mixed-halide perovskites for tandem photovoltaics. Here we report that light-induced halide segregation is strain-activated in MAPb(I1-xBrx)3 with Br concentration below approximately 50%, while it is intrinsic for Br concentration over approximately 50%. Free-standing single crystals of CH3NH3Pb(I0.65Br0.35)3 (35%Br) do not show halide segregation until uniaxial pressure is applied. Besides, 35%Br single crystals grown on lattice-mismatched substrates (e.g. single-crystal CaF2) show inhomogeneous segregation due to heterogenous strain distribution. Through scanning probe microscopy, the above findings are successfully translated to polycrystalline thin films. For 35%Br thin films, halide segregation selectively occurs at grain boundaries due to localized strain at the boundaries; yet for 65%Br films, halide segregation occurs in the whole layer. We close by demonstrating that only the strain-activated halide segregation (35%Br/45%Br thin films) could be suppressed if the strain is properly released via additives (e.g. KI) or ideal substrates (e.g. SiO2).

8.
Nano Lett ; 20(5): 3090-3097, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283026

RESUMEN

Despite the intense research on photovoltaic lead halide perovskites, reported optical properties as basic as the absorption onset and the optical band gap vary significantly. To unambiguously answer the question whether the discrepancies are a result of differences between bulk and "near-surface" material, we perform two nonlinear spectroscopies with drastically different information depths on single crystals of the prototypical (CH3NH3)PbI3 methylammonium lead iodide. Two-photon absorption, detected via the resulting generation of carriers and photocurrents (2PI-PC), probes the interband transitions with an information depth in the millimeter range relevant for bulk (single-crystal) material. In contrast, the transient magneto-optical Kerr effect (trMOKE) measured in a reflection geometry determines the excitonic transition energies in the region near (hundreds of nm) the surface which also determine the optical properties in typical thin films. To identify differences between structural phases, we sweep the sample temperature across the orthorhombic-tetragonal phase transition temperature. In the application-relevant room-temperature tetragonal phase (at 170 K), we find a bulk band gap of 1.55 ± 0.01 eV, whereas in the near-surface region excitonic transitions occur at 1.59 ± 0.01 eV. The latter value is consistent with previous reflectance measurements by other groups and considerably higher than the bulk band gap. The small band gap of the bulk material explains the extended infrared absorption of crystalline perovskite solar cells, the low-energy bands which carry optically driven spin-polarized currents, and the narrow bandwidth of crystalline perovskite photodetectors making use of the spectral filtering at the surface.

9.
ACS Appl Mater Interfaces ; 11(42): 39018-39025, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31576735

RESUMEN

Controllably manipulating the spectral response of broadband-absorbing semiconductors is crucial for developing wavelength-selective optoelectronic devices. In this article, we report for the first time, the bias-dependent spectral responses for a metal-halide perovskite photodiode. Tunable external quantum efficiencies in the short- and long-wavelength regimes, and the full spectral range (ca. 300-800 nm) are observed when the device is operated under short-circuit, and forward and reverse bias conditions, respectively. This observation is understood by the interplay of wavelength-dependent penetration depth and barrier formation within the photodiode device stack. The general applicability of this concept is confirmed by a systematic study on a series of mixed-halide perovskite devices. These results suggest that the proposed concept allows as a promising platform and should inspire further exploration of multispectral responsive optoelectronic devices.

10.
Proc Natl Acad Sci U S A ; 115(38): 9509-9514, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181293

RESUMEN

Lead halide perovskites are used in thin-film solar cells, which owe their high efficiency to the long lifetimes of photocarriers. Various calculations find that a dynamical Rashba effect could significantly contribute to these long lifetimes. This effect is predicted to cause a spin splitting of the electronic bands of inversion-symmetric crystalline materials at finite temperatures, resulting in a slightly indirect band gap. Direct experimental evidence of the existence or the strength of the spin splitting is lacking. Here, we resonantly excite photocurrents in single crystalline ([Formula: see text])[Formula: see text] with circularly polarized light to clarify the existence of spin splittings in the band structure. We observe a circular photogalvanic effect, i.e., the photocurrent depends on the light helicity, in both orthorhombic and tetragonal ([Formula: see text])[Formula: see text] At room temperature, the effect peaks for excitation photon energies [Formula: see text] meV below the direct optical band gap. Temperature-dependent measurements reveal a sign change of the effect at the orthorhombic-tetragonal phase transition, indicating different microscopic origins in the two phases. Within the tetragonal phase, both [Formula: see text] and the amplitude of the circular photogalvanic effect increase with temperature. Our findings support a dynamical Rashba effect in this phase, i.e., a spin splitting caused by thermally induced structural fluctuations which break inversion symmetry.

12.
Nano Lett ; 18(3): 2172-2178, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29498866

RESUMEN

Mixed-halide perovskites have emerged as promising materials for optoelectronics due to their tunable band gap in the entire visible region. A challenge remains, however, in the photoinduced phase segregation, narrowing the band gap of mixed-halide perovskites under illumination thus restricting applications. Here, we use a combination of spatially resolved and bulk measurements to give an in-depth insight into this important yet unclear phenomenon. We demonstrate that photoinduced phase segregation in mixed-halide perovskites selectively occurs at the grain boundaries rather than within the grain centers by using shear-force scanning probe microscopy in combination with confocal optical spectroscopy. Such difference is further evidenced by light-biased bulk Fourier-transform photocurrent spectroscopy, which shows the iodine-rich domain as a minority phase coexisting with the homogeneously mixed phase during illumination. By mapping the surface potential of mixed-halide perovskites, we evidence the higher concentration of positive space charge near the grain boundary possibly provides the initial driving force for phase segregation, while entropic mixing dominates the reverse process. Our work offers detailed insight into the microscopic processes occurring at the boundary of crystalline perovskite grains and will support the development of better passivation strategies, ultimately allowing the processing of more environmentally stable perovskite films.

13.
Rev Sci Instrum ; 89(1): 013302, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29390683

RESUMEN

We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

14.
Nat Commun ; 9(1): 423, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379024

RESUMEN

Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources.

16.
Nano Lett ; 17(5): 2765-2770, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28388067

RESUMEN

In the past few years, hybrid organic-inorganic and all-inorganic metal halide perovskite nanocrystals have become one of the most interesting materials for optoelectronic applications. Here, we report a facile and rapid room temperature synthesis of 15-25 nm formamidinium CH(NH2)2PbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) colloidal nanocrystals by ligand-assisted reprecipitation (LARP). The cubic and platelet-like nanocrystals with their emission in the range of 415-740 nm, full width at half-maximum (fwhm) of 20-44 nm, and radiative lifetimes of 5-166 ns enable band gap tuning by halide composition as well as by their thickness tailoring; they have a high photoluminescence quantum yield (up to 85%), colloidal and thermodynamic stability. Combined with surface modification that prevents degradation by water, this nanocrystalline material is an ideal candidate for optoelectronic devices and applications. In addition, optoelectronic measurements verify that the photodetector based on FAPbI3 nanocrystals paves the way for perovskite quantum dot photovoltaics.

17.
Nat Commun ; 8: 14541, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28224984

RESUMEN

The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells.

18.
J Phys Chem Lett ; 7(22): 4438-4444, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27749079

RESUMEN

We investigate the photoinduced absorption (PIA) spectra of the prototypical donor-acceptor polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT) and its silicon bridged variant Si-PCPDTBT over a spectral range from 0.07 to 1.5 eV. Comparison between time-dependent density functional theory simulations of the electronic and vibrational transitions of singlet excitons, triplet excitons, polarons, and bipolarons with the experimental results proves that the observed features are due to positive polarons delocalized on the polymer chains. We find that the more crystalline Si-bridged variant gives rise to a red-shift in the transition energies, especially in the mid-infrared (MIR) spectral range and furthermore observe that the pristine polymers' responses depend on the excitation energy. Blending with PCBM, on the other hand, leads to excitation-independent PIA spectra. By computing the response properties of molecular aggregates, we show that polarons are delocalized in not only the intra- but also the interchain direction, leading to intermolecular transitions which correspond well to experimental absorption features at the lowest energies.

19.
Adv Mater ; 28(25): 5112-20, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27144875

RESUMEN

A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%. Importantly, it is found that LT-NiO boosts the limits of open-circuit voltages toward an impressive non-radiative voltage loss of 0.226 V only, whereas PEDOT: PSS suffers from significant large non-radiative recombination losses.

20.
Nat Photonics ; 9(7): 444-449, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28553368

RESUMEN

The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGyair-1 cm-3) and responsivity (1.9×104 carriers/photon), which are commensurate with those obtained by the current solid-state technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...